今日の為替レートrate

お振込銀行

クレジットカード支払い

ログイン | LOGIN

  • ems
  • jetro
  • ems

Reinforcement Learning Second Edition: An Introduction : An Introduction

通常価格 97,000ウォン
販売価格 97,000ウォン
韓国内配送料 2,500ウォン
オプション
 
 
商品購入についてのご案内
 

・こちらで紹介している商品はワンモアが販売する商品ではありません。

・この商品の詳細情報、原産地、などは下記の【元の商品ページで開く】をクリックすると通販サイトで確認できます。

・この商品は韓国通販サイト【Auction.co.kr】の情報提携によって掲載しています。

・掲載されている商品のすべてが購入代行可能な商品ではなく、国際発送ができない商品や輸入ができない商品もあります。

・こちらで紹介している商品のイメージや詳細内容につきましては一切責任を負いません。

・購入希望の場合は販売サイト情報をご確認の上、「購入代行サービスお申し込み」よりご依頼ください。



안내

Hardcover, 2nd Edition

상품소개

The significantly expanded and updated new edition of a widely used text on reinforcement learning, one of the most active research areas in artificial intelligence.

Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives while interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the field's key ideas and algorithms. This second edition has been significantly expanded and updated, presenting new topics and updating coverage of other topics.

Like the first edition, this second edition focuses on core online learning algorithms, with the more mathematical material set off in shaded boxes. Part I covers as much of reinforcement learning as possible without going beyond the tabular case for which exact solutions can be found. Many algorithms presented in this part are new to the second edition, including UCB, Expected Sarsa, and Double Learning. Part II extends these ideas to function approximation, with new sections on such topics as artificial neural networks and the Fourier basis, and offers expanded treatment of off-policy learning and policy-gradient methods. Part III has new chapters on reinforcement learning's relationships to psychology and neuroscience, as well as an updated case-studies chapter including AlphaGo and AlphaGo Zero, Atari game playing, and IBM Watson's wagering strategy. The final chapter discusses the future societal impacts of reinforcement learning.